Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Hodge Theory and Complex Algebraic Geometry II: Volume 2
Paperback

Hodge Theory and Complex Algebraic Geometry II: Volume 2

$91.99
Sign in or become a Readings Member to add this title to your wishlist.

The 2003 second volume of this account of Kaehlerian geometry and Hodge theory starts with the topology of families of algebraic varieties. Proofs of the Lefschetz theorem on hyperplane sections, the Picard-Lefschetz study of Lefschetz pencils, and Deligne theorems on the degeneration of the Leray spectral sequence and the global invariant cycles follow. The main results of the second part are the generalized Noether-Lefschetz theorems, the generic triviality of the Abel-Jacobi maps, and most importantly Nori’s connectivity theorem, which generalizes the above. The last part of the book is devoted to the relationships between Hodge theory and algebraic cycles. The book concludes with the example of cycles on abelian varieties, where some results of Bloch and Beauville, for example, are expounded. The text is complemented by exercises giving useful results in complex algebraic geometry. It will be welcomed by researchers in both algebraic and differential geometry.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Cambridge University Press
Country
United Kingdom
Date
20 December 2007
Pages
362
ISBN
9780521718028

The 2003 second volume of this account of Kaehlerian geometry and Hodge theory starts with the topology of families of algebraic varieties. Proofs of the Lefschetz theorem on hyperplane sections, the Picard-Lefschetz study of Lefschetz pencils, and Deligne theorems on the degeneration of the Leray spectral sequence and the global invariant cycles follow. The main results of the second part are the generalized Noether-Lefschetz theorems, the generic triviality of the Abel-Jacobi maps, and most importantly Nori’s connectivity theorem, which generalizes the above. The last part of the book is devoted to the relationships between Hodge theory and algebraic cycles. The book concludes with the example of cycles on abelian varieties, where some results of Bloch and Beauville, for example, are expounded. The text is complemented by exercises giving useful results in complex algebraic geometry. It will be welcomed by researchers in both algebraic and differential geometry.

Read More
Format
Paperback
Publisher
Cambridge University Press
Country
United Kingdom
Date
20 December 2007
Pages
362
ISBN
9780521718028