Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This is a genuine introduction to plane algebraic curves from a geometric viewpoint, designed as a first text for undergraduates in mathematics, or for postgraduate and research workers in the engineering and physical sciences. The book contains several hundred worked examples and exercises, making it suitable for adoption as a course text. From the lines and conics of elementary geometry the reader proceeds to general curves in the real affine plane, with excursions to more general fields to illustrate applications, such as number theory. By adding points at infinity the affine plane is extended to the projective plane, yielding a natural setting for curves and providing a flood of illumination into the underlying geometry. A minimal amount of algebra leads to the famous theorem of Bezout, whilst the ideas of linear systems are used to discuss the classical group structure on the cubic.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This is a genuine introduction to plane algebraic curves from a geometric viewpoint, designed as a first text for undergraduates in mathematics, or for postgraduate and research workers in the engineering and physical sciences. The book contains several hundred worked examples and exercises, making it suitable for adoption as a course text. From the lines and conics of elementary geometry the reader proceeds to general curves in the real affine plane, with excursions to more general fields to illustrate applications, such as number theory. By adding points at infinity the affine plane is extended to the projective plane, yielding a natural setting for curves and providing a flood of illumination into the underlying geometry. A minimal amount of algebra leads to the famous theorem of Bezout, whilst the ideas of linear systems are used to discuss the classical group structure on the cubic.