Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This book covers the fundamentals of conventional transmission electron microscopy (CTEM) as applied to crystalline solids. Emphasis is on the experimental and computational methods used to quantify and analyze CTEM observations. A supplementary website containing interactive modules and free Fortran source code accompanies the text. The book starts with the basics of crystallography and quantum mechanics providing a sound mathematical footing for the rest of the text. The next section deals with the microscope itself, describing the various components in terms of the underlying theory. The second half of the book focuses on the dynamical theory of electron scattering in solids including its applications to perfect and defective crystals, electron diffraction and phase contrast techniques. Based on a lecture course given by the author in the Department of Materials Science and Engineering at Carnegie Mellon University, the book is ideal for graduate students as well as researchers new to the field.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This book covers the fundamentals of conventional transmission electron microscopy (CTEM) as applied to crystalline solids. Emphasis is on the experimental and computational methods used to quantify and analyze CTEM observations. A supplementary website containing interactive modules and free Fortran source code accompanies the text. The book starts with the basics of crystallography and quantum mechanics providing a sound mathematical footing for the rest of the text. The next section deals with the microscope itself, describing the various components in terms of the underlying theory. The second half of the book focuses on the dynamical theory of electron scattering in solids including its applications to perfect and defective crystals, electron diffraction and phase contrast techniques. Based on a lecture course given by the author in the Department of Materials Science and Engineering at Carnegie Mellon University, the book is ideal for graduate students as well as researchers new to the field.