Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Tame Topology and O-minimal Structures
Paperback

Tame Topology and O-minimal Structures

$119.99
Sign in or become a Readings Member to add this title to your wishlist.

Following their introduction in the early 1980s, o-minimal structures have provided an elegant and surprisingly efficient generalization of semialgebraic and subanalytic geometry. This book gives a self-contained treatment of the theory of o-minimal structures from a geometric and topological viewpoint, assuming only rudimentary algebra and analysis. It starts with an introduction and overview of the subject. Later chapters cover the monotonicity theorem, cell decomposition, and the Euler characteristic in the o-minimal setting and show how these notions are easier to handle than in ordinary topology. The remarkable combinatorial property of o-minimal structures, the Vapnik-Chervonenkis property, is also covered. This book should be of interest to model theorists, analytic geometers and topologists.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Cambridge University Press
Country
United Kingdom
Date
7 May 1998
Pages
192
ISBN
9780521598385

Following their introduction in the early 1980s, o-minimal structures have provided an elegant and surprisingly efficient generalization of semialgebraic and subanalytic geometry. This book gives a self-contained treatment of the theory of o-minimal structures from a geometric and topological viewpoint, assuming only rudimentary algebra and analysis. It starts with an introduction and overview of the subject. Later chapters cover the monotonicity theorem, cell decomposition, and the Euler characteristic in the o-minimal setting and show how these notions are easier to handle than in ordinary topology. The remarkable combinatorial property of o-minimal structures, the Vapnik-Chervonenkis property, is also covered. This book should be of interest to model theorists, analytic geometers and topologists.

Read More
Format
Paperback
Publisher
Cambridge University Press
Country
United Kingdom
Date
7 May 1998
Pages
192
ISBN
9780521598385