Uniform Central Limit Theorems
R. M. Dudley (Massachusetts Institute of Technology)
Uniform Central Limit Theorems
R. M. Dudley (Massachusetts Institute of Technology)
In this new edition of a classic work on empirical processes the author, an acknowledged expert, gives a thorough treatment of the subject with the addition of several proved theorems not included in the first edition, including the Bretagnolle-Massart theorem giving constants in the Komlos-Major-Tusnady rate of convergence for the classical empirical process, Massart’s form of the Dvoretzky-Kiefer-Wolfowitz inequality with precise constant, Talagrand’s generic chaining approach to boundedness of Gaussian processes, a characterization of uniform Glivenko-Cantelli classes of functions, Gine and Zinn’s characterization of uniform Donsker classes, and the Bousquet-Koltchinskii-Panchenko theorem that the convex hull of a uniform Donsker class is uniform Donsker. The book will be an essential reference for mathematicians working in infinite-dimensional central limit theorems, mathematical statisticians, and computer scientists working in computer learning theory. Problems are included at the end of each chapter so the book can also be used as an advanced text.
This item is not currently in-stock. It can be ordered online and is expected to ship in approx 2 weeks
Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.
Sign in or become a Readings Member to add this title to a wishlist.