Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This graduate/research level book describes our present knowledge of protons and neutrons, the particles which make up the nucleus of the atom. Experiments using high energy electrons, muons and neutrinos reveal the proton as being made up of point-like constituents, quarks. The strong forces which bind the quarks together are described in terms of the modern theory of quantum chromodynamics (QCD), the ‘glue’ binding the quarks being mediated by new constituents called gluons. Larger and new particle accelerators probe the interactions between quarks and gluons at shorter distances. The understanding of this detailed substructure and of the fundamental forces responsible is one of the keys to unravelling the physics of the structure of matter. This book will be of interest to all theoretical and experimental particle physicists.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This graduate/research level book describes our present knowledge of protons and neutrons, the particles which make up the nucleus of the atom. Experiments using high energy electrons, muons and neutrinos reveal the proton as being made up of point-like constituents, quarks. The strong forces which bind the quarks together are described in terms of the modern theory of quantum chromodynamics (QCD), the ‘glue’ binding the quarks being mediated by new constituents called gluons. Larger and new particle accelerators probe the interactions between quarks and gluons at shorter distances. The understanding of this detailed substructure and of the fundamental forces responsible is one of the keys to unravelling the physics of the structure of matter. This book will be of interest to all theoretical and experimental particle physicists.