Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This book presents the fundamentals of chaos theory in conservative systems and provides a systematic study of the theory of transitional states of physical systems that lie between deterministic and chaotic behavior. The authors begin with the general concepts of Hamiltonian dynamics, stabililty, and chaos, and then discuss the theory of stochastic layers and webs and the numerous applications of this theory, particularly to pattern symmetry. Throughout, they are meticulous in providing a detailed presentation of the material, which enables the reader to learn the necessary computational methods and to apply them to other problems. The inclusion of computer graphics will aid understanding and the final section of the book contains a collection of patterns in art and living nature that will fascinate.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This book presents the fundamentals of chaos theory in conservative systems and provides a systematic study of the theory of transitional states of physical systems that lie between deterministic and chaotic behavior. The authors begin with the general concepts of Hamiltonian dynamics, stabililty, and chaos, and then discuss the theory of stochastic layers and webs and the numerous applications of this theory, particularly to pattern symmetry. Throughout, they are meticulous in providing a detailed presentation of the material, which enables the reader to learn the necessary computational methods and to apply them to other problems. The inclusion of computer graphics will aid understanding and the final section of the book contains a collection of patterns in art and living nature that will fascinate.