Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This book presents the salient features of the general theory of infinite electrical networks in a coherent exposition. Using the basic tools of functional analysis and graph theory, the author examines the fundamental developments in the field and discusses applications to other areas of mathematics. The first half of the book presents existence and uniqueness theorems for both infinite-power and finite-power voltage-current regimes, and the second half discusses methods for solving problems in infinite cascades and grids. A notable feature is the invention of transfinite networks, roughly analogous to Cantor’s extension of the natural numbers to the transfinite ordinals. The last chapter is a survey of application to exterior problems of partial differential equations, random walks on infinite graphs, and networks of operators on Hilbert spaces.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This book presents the salient features of the general theory of infinite electrical networks in a coherent exposition. Using the basic tools of functional analysis and graph theory, the author examines the fundamental developments in the field and discusses applications to other areas of mathematics. The first half of the book presents existence and uniqueness theorems for both infinite-power and finite-power voltage-current regimes, and the second half discusses methods for solving problems in infinite cascades and grids. A notable feature is the invention of transfinite networks, roughly analogous to Cantor’s extension of the natural numbers to the transfinite ordinals. The last chapter is a survey of application to exterior problems of partial differential equations, random walks on infinite graphs, and networks of operators on Hilbert spaces.