Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Rock Magnetism is a comprehensive treatment of fine particle magnetism and the magnetic properties of rocks. Starting from atomic magnetism and magnetostatic principles, the authors explain why domains and micromagnetic structures form in ferromagnetic crystals and how these lead to magnetic memory in the form of thermal, chemical and other remanent magnetizations. The phenomenal stability of these magnetizations, providing a record of plate tectonic motions over millions of years, is explained by thermal activation theory. One chapter is devoted to practical tests of domain state and paleomagnetic stability; another deals with pseudo-single-domain magnetism. The final four chapters place magnetism in the context of igneous, sedimentary, metamorphic, and extraterrestrial rocks. This book will be of great value to graduate students and researchers in geophysics and geology, particularly in paleomagnetism and rock magnetism, as well as physicists and electrical engineers interested in fine-particle magnetism and magnetic recording.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Rock Magnetism is a comprehensive treatment of fine particle magnetism and the magnetic properties of rocks. Starting from atomic magnetism and magnetostatic principles, the authors explain why domains and micromagnetic structures form in ferromagnetic crystals and how these lead to magnetic memory in the form of thermal, chemical and other remanent magnetizations. The phenomenal stability of these magnetizations, providing a record of plate tectonic motions over millions of years, is explained by thermal activation theory. One chapter is devoted to practical tests of domain state and paleomagnetic stability; another deals with pseudo-single-domain magnetism. The final four chapters place magnetism in the context of igneous, sedimentary, metamorphic, and extraterrestrial rocks. This book will be of great value to graduate students and researchers in geophysics and geology, particularly in paleomagnetism and rock magnetism, as well as physicists and electrical engineers interested in fine-particle magnetism and magnetic recording.