Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Metal vapour ion lasers are a mature class of gas laser for which a number of applications has developed in recent years. This is the first book to appear in the English language on this topic, and concentrates on the physical processes which occur in the laser, in particular the kinetic processes which are responsible for the pumping of excited ion levels, and the production of population inversion. The most important types of electrical discharges used in this class of laser are discussed in detail, and all the major types of metal vapour ion laser are examined. A highly useful appendix tabulates all the known transitions used in metal vapour ion lasers. Metal Vapour Ion Lasers: Kinetic Processes and Gas Discharges provides a much needed review of this important field. It identifies current problem areas, and points to future research directions. It is an invaluable source for all those, both in industry and academia, working on the development or applications of metal vapour ion lasers, and for all those involved in gas laser research. It will also be of great interest to all those interested in the physics of gas discharges. The authors and translators have been involved with some of the key advances in the field over recent years.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Metal vapour ion lasers are a mature class of gas laser for which a number of applications has developed in recent years. This is the first book to appear in the English language on this topic, and concentrates on the physical processes which occur in the laser, in particular the kinetic processes which are responsible for the pumping of excited ion levels, and the production of population inversion. The most important types of electrical discharges used in this class of laser are discussed in detail, and all the major types of metal vapour ion laser are examined. A highly useful appendix tabulates all the known transitions used in metal vapour ion lasers. Metal Vapour Ion Lasers: Kinetic Processes and Gas Discharges provides a much needed review of this important field. It identifies current problem areas, and points to future research directions. It is an invaluable source for all those, both in industry and academia, working on the development or applications of metal vapour ion lasers, and for all those involved in gas laser research. It will also be of great interest to all those interested in the physics of gas discharges. The authors and translators have been involved with some of the key advances in the field over recent years.