Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo Mandic,Vanessa Su Lee Goh
Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models
Danilo Mandic,Vanessa Su Lee Goh
This book was written in response to the growing demand for a text that provides a unified treatment of linear and nonlinear complex valued adaptive filters, and methods for the processing of general complex signals (circular and noncircular). It brings together adaptive filtering algorithms for feedforward (transversal) and feedback architectures and the recent developments in the statistics of complex variable, under the powerful frameworks of CR (Wirtinger) calculus and augmented complex statistics. This offers a number of theoretical performance gains, which is illustrated on both stochastic gradient algorithms, such as the augmented complex least mean square (ACLMS), and those based on Kalman filters. This work is supported by a number of simulations using synthetic and real world data, including the noncircular and intermittent radar and wind signals.
This item is not currently in-stock. It can be ordered online and is expected to ship in approx 4 weeks
Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.
Sign in or become a Readings Member to add this title to a wishlist.