Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems

David A. Wood

Format
Paperback
Publisher
Elsevier - Health Sciences Division
Country
United States
Published
1 January 2025
Pages
475
ISBN
9780443265105

Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems

David A. Wood

Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems: Prediction Models Exploiting Well-Log Information explores machine and deep learning models for subsurface geological prediction problems commonly encountered in applied resource evaluation and reservoir characterization tasks. The book provides insights into how the performance of ML/DL models can be optimized-and sparse datasets of input variables enhanced and/or rescaled-to improve prediction performances. A variety of topics are covered, including regression models to estimate total organic carbon from well-log data, predicting brittleness indexes in tight formation sequences, trapping mechanisms in potential sub-surface carbon storage reservoirs, and more.

Each chapter includes its own introduction, summary, and nomenclature sections, along with one or more case studies focused on prediction model implementation related to its topic.

Order online and we’ll ship when available (1 January 2025)

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.