Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Kinetic Energy Harvesters: Principles, Technologies, and Applications presents a comprehensive analysis of the five types of kinetic energy harvesters, offering readers a single resource to learn about the principles, technologies, and applications.
The opening chapters of the book provide a concise review of free and forced vibration analysis, as well as Multi Degree of Freedom systems. The subsequent chapters systematically examine the five types of energy harvesters, piezoelectric, electromagnetic, magnetostrictive, electrostatic, and triboelectric. Within the chapters, each ambient vibration phenomenon is described in detail, followed by an explanation of the relevant principles. Analytical analyses of kinetic energy and its conversion to electrical energy are then presented, alongside the governing equations, and a discussion of the technologies applications. Finally, MATLAB code is provided for programming calculations.
A comprehensive resource on kinetic energy harvesting, Kinetic Energy Harvesters: Principles, Technologies, and Applications is an invaluable resource for anyone working on energy harvesting technologies, energy conversion, or the diverse range of applications for these technologies.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Kinetic Energy Harvesters: Principles, Technologies, and Applications presents a comprehensive analysis of the five types of kinetic energy harvesters, offering readers a single resource to learn about the principles, technologies, and applications.
The opening chapters of the book provide a concise review of free and forced vibration analysis, as well as Multi Degree of Freedom systems. The subsequent chapters systematically examine the five types of energy harvesters, piezoelectric, electromagnetic, magnetostrictive, electrostatic, and triboelectric. Within the chapters, each ambient vibration phenomenon is described in detail, followed by an explanation of the relevant principles. Analytical analyses of kinetic energy and its conversion to electrical energy are then presented, alongside the governing equations, and a discussion of the technologies applications. Finally, MATLAB code is provided for programming calculations.
A comprehensive resource on kinetic energy harvesting, Kinetic Energy Harvesters: Principles, Technologies, and Applications is an invaluable resource for anyone working on energy harvesting technologies, energy conversion, or the diverse range of applications for these technologies.