Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Machine Learning for Powder-Based Metal Additive Manufacturing
Paperback

Machine Learning for Powder-Based Metal Additive Manufacturing

$789.99
Sign in or become a Readings Member to add this title to your wishlist.

Machine Learning for Powder-based Metal Additive Manufacturing outlines machine learning (ML) methods for additive manufacturing (AM) of metals that will improve product quality, optimize manufacturing processes, and reduce costs. The book combines ML and AM methods to develop intelligent models that train AM techniques in pre-processing, process optimization, and post-processing for optimized microstructure, tensile and fatigue properties, and biocompatibility for various applications. The book covers ML for design in AM, ML for materials development and intelligent monitoring in metal AM, both geometrical deviation and physics informed machine learning modeling, as well as data-driven cost estimation by ML.

In addition, optimization for slicing and orientation, ML to create models of materials for AM processes, ML prediction for better mechanical and microstructure prediction, and feature extraction by sensing data are all covered, and each chapter includes a case study.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Elsevier - Health Sciences Division
Country
United States
Date
9 September 2024
Pages
290
ISBN
9780443221453

Machine Learning for Powder-based Metal Additive Manufacturing outlines machine learning (ML) methods for additive manufacturing (AM) of metals that will improve product quality, optimize manufacturing processes, and reduce costs. The book combines ML and AM methods to develop intelligent models that train AM techniques in pre-processing, process optimization, and post-processing for optimized microstructure, tensile and fatigue properties, and biocompatibility for various applications. The book covers ML for design in AM, ML for materials development and intelligent monitoring in metal AM, both geometrical deviation and physics informed machine learning modeling, as well as data-driven cost estimation by ML.

In addition, optimization for slicing and orientation, ML to create models of materials for AM processes, ML prediction for better mechanical and microstructure prediction, and feature extraction by sensing data are all covered, and each chapter includes a case study.

Read More
Format
Paperback
Publisher
Elsevier - Health Sciences Division
Country
United States
Date
9 September 2024
Pages
290
ISBN
9780443221453