Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Micro Fluidization: Fundamentals and Applications provides background and history on micro fluidized bed research and development, summarizes and analyzes the hydrodynamic characteristics of gas-solid micro fluidized beds, and delves into areas such as research results of delayed onsets of minimum, bubbling and slugging fluidization regimes, as well as of the advanced transitions to turbulent and fast fluidization regimes. Based on these results, the wall effects - the key mechanism resulting in the unique behavior of micro fluidization - are analyzed. Other sections discuss gas and solid mixing characteristics in terms of gas residence time distribution, gas backmixing, and solids mixing.
Final sections focus on presentations of the so-called micro fluidized bed reaction analyzer (MFBRA) - a powerful tool for catalyst screening, process development, optimization of reaction parameters, studies of reaction mechanism and kinetics, among many other purposes. The book describes, in detail, the MFBRA's system design characteristics, analytic methodologies and various applications in thermochemical and catalytic reaction analysis.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Micro Fluidization: Fundamentals and Applications provides background and history on micro fluidized bed research and development, summarizes and analyzes the hydrodynamic characteristics of gas-solid micro fluidized beds, and delves into areas such as research results of delayed onsets of minimum, bubbling and slugging fluidization regimes, as well as of the advanced transitions to turbulent and fast fluidization regimes. Based on these results, the wall effects - the key mechanism resulting in the unique behavior of micro fluidization - are analyzed. Other sections discuss gas and solid mixing characteristics in terms of gas residence time distribution, gas backmixing, and solids mixing.
Final sections focus on presentations of the so-called micro fluidized bed reaction analyzer (MFBRA) - a powerful tool for catalyst screening, process development, optimization of reaction parameters, studies of reaction mechanism and kinetics, among many other purposes. The book describes, in detail, the MFBRA's system design characteristics, analytic methodologies and various applications in thermochemical and catalytic reaction analysis.