Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Four Point Bending
Hardback

Four Point Bending

$928.99
Sign in or become a Readings Member to add this title to your wishlist.

Cracking is recognized as one of the main causes of pavement deterioration, and is the primary cause of the need for maintenance and rehabilitation. Researchers around the world are working on the problem of cracking in asphalt pavements, with the goal of developing better understanding of the mechanics of cracking, creating test methods for assessing the risk of cracking for different materials and designs, and implementing these results into improved design methods and specifications. This Third Conference on Four-point bending held at the University of California, Davis, USA, follows two successful previous conferences, held at the Delft University of Technology, The Netherlands, in 2007, and at the University of Minho, Portugal in 2009. The primary objective of these conferences is to provide an exchange of ideas and experience and to disseminate that knowledge among researchers, government and private agencies and consultants, about the use of the four-point bending test to evaluate stiffness and fatigue resistance of bituminous mixtures. These proceedings include 23 papers from 15 countries that have been subjected to peer review by a scientific committee composed of experts in asphalt materials, design and testing. Themes of the papers cover a range of topics, including modelling of the four-point beam test, applications to mechanistic design, asphaltic materials evaluation, comparisons with other tests and non-asphaltic materials evaluation.

Four Point Bending is of interest to academics and professionals interested in pavement engineering.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
9 October 2012
Pages
310
ISBN
9780415643313

Cracking is recognized as one of the main causes of pavement deterioration, and is the primary cause of the need for maintenance and rehabilitation. Researchers around the world are working on the problem of cracking in asphalt pavements, with the goal of developing better understanding of the mechanics of cracking, creating test methods for assessing the risk of cracking for different materials and designs, and implementing these results into improved design methods and specifications. This Third Conference on Four-point bending held at the University of California, Davis, USA, follows two successful previous conferences, held at the Delft University of Technology, The Netherlands, in 2007, and at the University of Minho, Portugal in 2009. The primary objective of these conferences is to provide an exchange of ideas and experience and to disseminate that knowledge among researchers, government and private agencies and consultants, about the use of the four-point bending test to evaluate stiffness and fatigue resistance of bituminous mixtures. These proceedings include 23 papers from 15 countries that have been subjected to peer review by a scientific committee composed of experts in asphalt materials, design and testing. Themes of the papers cover a range of topics, including modelling of the four-point beam test, applications to mechanistic design, asphaltic materials evaluation, comparisons with other tests and non-asphaltic materials evaluation.

Four Point Bending is of interest to academics and professionals interested in pavement engineering.

Read More
Format
Hardback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
9 October 2012
Pages
310
ISBN
9780415643313