Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book is about generalized linear models as described by NeIder and Wedderburn (1972). This approach provides a unified theoretical and computational framework for the most commonly used statistical methods: regression, analysis of variance and covariance, logistic regression, log-linear models for contingency tables and several more specialized techniques. More advanced expositions of the subject are given by McCullagh and NeIder (1983) and Andersen (1980). The emphasis is on the use of statistical models to investigate substantive questions rather than to produce mathematical descriptions of the data. Therefore parameter estimation and hypothesis testing are stressed. I have assumed that the reader is familiar with the most commonly used statistical concepts and methods and has some basic knowledge of calculus and matrix algebra. Short numerical examples are used to illustrate the main points. In writing this book I have been helped greatly by the comments and criticism of my students and colleagues, especially Anne Young. However, the choice of material, and the obscurities and errors are my responsibility and I apologize to the reader for any irritation caused by them. For typing the manuscript under difficult conditions I am grateful to Anne McKim, Jan Garnsey, Cath Claydon and Julie Latimer.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book is about generalized linear models as described by NeIder and Wedderburn (1972). This approach provides a unified theoretical and computational framework for the most commonly used statistical methods: regression, analysis of variance and covariance, logistic regression, log-linear models for contingency tables and several more specialized techniques. More advanced expositions of the subject are given by McCullagh and NeIder (1983) and Andersen (1980). The emphasis is on the use of statistical models to investigate substantive questions rather than to produce mathematical descriptions of the data. Therefore parameter estimation and hypothesis testing are stressed. I have assumed that the reader is familiar with the most commonly used statistical concepts and methods and has some basic knowledge of calculus and matrix algebra. Short numerical examples are used to illustrate the main points. In writing this book I have been helped greatly by the comments and criticism of my students and colleagues, especially Anne Young. However, the choice of material, and the obscurities and errors are my responsibility and I apologize to the reader for any irritation caused by them. For typing the manuscript under difficult conditions I am grateful to Anne McKim, Jan Garnsey, Cath Claydon and Julie Latimer.