Bayesian Inference in Wavelet-Based Models

Bayesian Inference in Wavelet-Based Models
Format
Paperback
Publisher
Springer-Verlag New York Inc.
Country
United States
Published
22 June 1999
Pages
396
ISBN
9780387988856

Bayesian Inference in Wavelet-Based Models

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This volume provides a thorough introduction and reference for any researcher who is interested in Bayesian inference for wavelet-based models, but is not necessarily an expert in either. To achieve this goal the book starts with an extensive introductory chapter providing a self-contained introduction to the use of wavelet decompositions and the relation to Bayesian inference. The remaining papers in this volume are divided into six parts: independent prior modeling; decision theoretic aspects; dependent prior modeling; spatial models using bivariate wavelet bases; empirical Bayes approaches; and case studies. Chapters are written by experts who published the original research papers establishing the use of wavelet-based models in Bayesian inference. Peter Muller is Associate Professor and Brani Vidakovic is Assistant Professor of Statistics at Duke University.

This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.