Relative Distribution Methods in the Social Sciences

Mark S. Handcock,Martina Morris

Relative Distribution Methods in the Social Sciences
Format
Hardback
Publisher
Springer-Verlag New York Inc.
Country
United States
Published
5 August 1999
Pages
266
ISBN
9780387987781

Relative Distribution Methods in the Social Sciences

Mark S. Handcock,Martina Morris

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

In social science research, differences among groups or changes over time are a common focus of study. While means and variances are typically the basis for statistical methods used in this research, the underlying social theory often implies properties of distributions that are not well captured by these summary measures. Examples include the current controversies regarding growing inequality in earnings, racial diferences in test scores, socio-economic correlates of birth outcomes, and the impact of smoking on survival and health. The distributional differences that animate the debates in these fields are complex. They comprise the usual mean-shifts and changes in variance, but also more subtle comparisons of changes in the upper and lower tails of distributions. Survey and census data on such attributes contain a wealth of distributional information, but traditional methods of data analysis leave much of this information untapped. In this monograph, we present methods for full comparative distributional analysis. The methods are based on the relative distribution, a nonparametric complete summary of the information required for scale–invariant comparisons between two distributions. The relative distribution provides a general integrated framework for analysis. It offers a graphical component that simplifies exploratory data analysis and display, a statistically valid basis for the development of hypothesis-driven summary measures, and the potential for decomposition that enables one to examine complex hypotheses regarding the origins of distributional changes within and between groups. The monograph is written for data analysts and those interested in measurement, and it can serve as a textbook for a course on distributional methods. The presentation is application oriented,

This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.