Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Statistical Inference for Spatial Poisson Processes
Paperback

Statistical Inference for Spatial Poisson Processes

$276.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The book discusses the estimation theory for the wide class of inhomogeneous Poisson processes. The consistency, limit distributions and the convergence of moments of parameter estimators are established in regular and non-regular (change-point type) problems. The maximum likelihood, Bayesian, and the minimum distance estimators are investigated in parametric problems and the empiric intensity measure and the kernel-type estimators are studied in nonparametric estimation problems. The properties of the estimators are also described in the situations when the observed Poisson process does not belong to the parametric family (no true model), when there are many true models (nonidentifiable family), when the observation window can be chosen by an optimal way, and others. The question of asymptotic efficiency of estimators is discussed in all of these problems. The book will be useful for those who use models of Poisson processes in their research. The large number of examples of inhomogeneous Poisson processes discussed in the book are taken from the fields of optical communications, reliability, image processing, and nuclear medicine. The material is suitable for graduate courses on stochastic processes. The book assumes familiarity with probability theory and mathematical statistics. Yury A. Kutoyants, Professor of Mathematics at the University of Main, Le Mans, France, is a member of the Bernoulli Society, the Mathematical Society of France, and the Institute of Mathematical Statistics. He is associate editor of Finance and Stochastics and Statistical Inference for Stochastic Processes. He is author of Parameter Estimation for Stochastic Processes (Heldermann Verlag, Berlin, 1984) and Identification of Dynamical Systems with Small Noise (Kluwer, Dordrecht, 1994), and the of about 70 articles on the

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
11 September 1998
Pages
279
ISBN
9780387985626

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The book discusses the estimation theory for the wide class of inhomogeneous Poisson processes. The consistency, limit distributions and the convergence of moments of parameter estimators are established in regular and non-regular (change-point type) problems. The maximum likelihood, Bayesian, and the minimum distance estimators are investigated in parametric problems and the empiric intensity measure and the kernel-type estimators are studied in nonparametric estimation problems. The properties of the estimators are also described in the situations when the observed Poisson process does not belong to the parametric family (no true model), when there are many true models (nonidentifiable family), when the observation window can be chosen by an optimal way, and others. The question of asymptotic efficiency of estimators is discussed in all of these problems. The book will be useful for those who use models of Poisson processes in their research. The large number of examples of inhomogeneous Poisson processes discussed in the book are taken from the fields of optical communications, reliability, image processing, and nuclear medicine. The material is suitable for graduate courses on stochastic processes. The book assumes familiarity with probability theory and mathematical statistics. Yury A. Kutoyants, Professor of Mathematics at the University of Main, Le Mans, France, is a member of the Bernoulli Society, the Mathematical Society of France, and the Institute of Mathematical Statistics. He is associate editor of Finance and Stochastics and Statistical Inference for Stochastic Processes. He is author of Parameter Estimation for Stochastic Processes (Heldermann Verlag, Berlin, 1984) and Identification of Dynamical Systems with Small Noise (Kluwer, Dordrecht, 1994), and the of about 70 articles on the

Read More
Format
Paperback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
11 September 1998
Pages
279
ISBN
9780387985626