Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book bridges the gap between statistical theory and physcal experiment. It provides a thorough introduction to the statistical methods used in the experimental physical sciences and to the numerical methods used to implement them. An accompanying CD-ROM provides detailed code (in Fortran77 and in C) for implementing many of these algorithms (for IBM PS/2 or PC machines). The treatment emphasizes concise but rigorous mathematics but always retains its focus on applications. The reader is presumed to have a sound basic knowledge of differential and integral calulus and some knowledge of vectors and matrices (an appendix develops the vector and matrix methods used and provides a collection of related computer routines). After an introduction of probability, random variables, computer generation of random numbers (Monte Carlo methods) and impotrtant distributions (such as the biomial, Poisson, and normal distributions), the book turns to a discussion of statistical samples, the maximum likelihood method, and the testing of statistical hypotheses. The discussion concludes with the discussion of several important stistical methods: least squares, analysis of variance, polynomial regression, and analysis of tiem series. Appendices provide the necessary methods of matrix algebra, combinatorics, and many sets of useful algorithms and formulae. The book is intended for graduate students setting out on experimental research, but it should also provide a useful reference and programming guide for experienced experimenters. A large number of problems (many with hints or solutions) serve to help the reader test
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book bridges the gap between statistical theory and physcal experiment. It provides a thorough introduction to the statistical methods used in the experimental physical sciences and to the numerical methods used to implement them. An accompanying CD-ROM provides detailed code (in Fortran77 and in C) for implementing many of these algorithms (for IBM PS/2 or PC machines). The treatment emphasizes concise but rigorous mathematics but always retains its focus on applications. The reader is presumed to have a sound basic knowledge of differential and integral calulus and some knowledge of vectors and matrices (an appendix develops the vector and matrix methods used and provides a collection of related computer routines). After an introduction of probability, random variables, computer generation of random numbers (Monte Carlo methods) and impotrtant distributions (such as the biomial, Poisson, and normal distributions), the book turns to a discussion of statistical samples, the maximum likelihood method, and the testing of statistical hypotheses. The discussion concludes with the discussion of several important stistical methods: least squares, analysis of variance, polynomial regression, and analysis of tiem series. Appendices provide the necessary methods of matrix algebra, combinatorics, and many sets of useful algorithms and formulae. The book is intended for graduate students setting out on experimental research, but it should also provide a useful reference and programming guide for experienced experimenters. A large number of problems (many with hints or solutions) serve to help the reader test