Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Membrane Transport and Renal Physiology
Hardback

Membrane Transport and Renal Physiology

$276.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The papers in this volume arose out of the workshop Membrane Transport and Renal Physiology, which was conducted as part of the IMA 1998-1999 program year, Mathematics in Biology. The workshop brought together physiologists, biophysicists, and applied mathematicians who share a common interest in solute and water transport in biological systems, especially in the integrated function of the kidney. Solute and water transport through cells involves fluxes across two cell membranes, usually via specialized proteins that are integral membrane components. By means of mathematical representations, transport fluxes can be related to transmembrane solute concentrations and electrochemical driving forces. At the next level of functional integration, these representations can serve as key components for models of renal transcellular transport. Ultimately, simulations can be developed for transport-dependent aspects of overall renal function. Workshop topics included solute fluxes through ion channels, cotransporters, and metabolically-driven ion pumps; transport across fiber-matrix and capillary membranes; coordinated transport by renal epithelia; the urine concetrating mechanism; and intra-renal hemodynamic control. This volume will be of interest to biological and mathematical scientists who would like a view of recent mathematical efforts to represent membrane transport and its role in renal function.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
6 August 2002
Pages
404
ISBN
9780387954813

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The papers in this volume arose out of the workshop Membrane Transport and Renal Physiology, which was conducted as part of the IMA 1998-1999 program year, Mathematics in Biology. The workshop brought together physiologists, biophysicists, and applied mathematicians who share a common interest in solute and water transport in biological systems, especially in the integrated function of the kidney. Solute and water transport through cells involves fluxes across two cell membranes, usually via specialized proteins that are integral membrane components. By means of mathematical representations, transport fluxes can be related to transmembrane solute concentrations and electrochemical driving forces. At the next level of functional integration, these representations can serve as key components for models of renal transcellular transport. Ultimately, simulations can be developed for transport-dependent aspects of overall renal function. Workshop topics included solute fluxes through ion channels, cotransporters, and metabolically-driven ion pumps; transport across fiber-matrix and capillary membranes; coordinated transport by renal epithelia; the urine concetrating mechanism; and intra-renal hemodynamic control. This volume will be of interest to biological and mathematical scientists who would like a view of recent mathematical efforts to represent membrane transport and its role in renal function.

Read More
Format
Hardback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
6 August 2002
Pages
404
ISBN
9780387954813