Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
The topics in this volume include the ideas of mathematicians, physicists and chemists in the area of multiparticle scattering theory. Scattering theory (or collision theory as it is often called) is a fundamental area of theory and computation in both physics and chemistry. The correct formulation of scattering theory for two-body collisions is now well worked out, but systems with three or more particles still present fundamental unmet challenges, both in the formulations of the problem and in the interpretation of computational results. A key issue in the mathematical foundations is asymptotic completeness, which says that any state of a quantum system is a superposition of bound and scattering states. Key issues on the physical side are concerned with boundary conditions, electromagnetic fields, effective potentials and resonances.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
The topics in this volume include the ideas of mathematicians, physicists and chemists in the area of multiparticle scattering theory. Scattering theory (or collision theory as it is often called) is a fundamental area of theory and computation in both physics and chemistry. The correct formulation of scattering theory for two-body collisions is now well worked out, but systems with three or more particles still present fundamental unmet challenges, both in the formulations of the problem and in the interpretation of computational results. A key issue in the mathematical foundations is asymptotic completeness, which says that any state of a quantum system is a superposition of bound and scattering states. Key issues on the physical side are concerned with boundary conditions, electromagnetic fields, effective potentials and resonances.