Numerical Bayesian Methods Applied to Signal Processing
Joseph J.K. O Ruanaidh,William J. Fitzgerald
Numerical Bayesian Methods Applied to Signal Processing
Joseph J.K. O Ruanaidh,William J. Fitzgerald
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book is concerned with the processing of signals that have been sampled and digitized. The authors present algorithms for the optimization, random simulation, and numerical integration of probability densities for applications of Bayesian inference to signal processing. In particular, methods are developed for the computation of marginal densities and evidence, and are applied to previously intractable problems either involving large numbers of parameters or where the signal model is of a complex form. The emphasis is on the applications of these methods notably to the restoration of digital audio recordings and biomedical data. After a chapter which sets out the main principles of Bayesian inference applied to signal processing, subsequent chapters cover numerical approaches to these techniques, the use of Markov chain Monte Carlo methods, the identification of abrupt changes in data using the Bayesian piecewise linear model, and identifying missing samples in digital audio signals.
This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days
Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.
Sign in or become a Readings Member to add this title to a wishlist.