Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
There exists a large variety of image reconstruction methods proposed by different authors (see e. g. Pratt (1978), Rosenfeld and Kak (1982), Marr (1982)). Selection of an appropriate method for a specific problem in image analysis has been always considered as an art. How to find the image reconstruction method which is optimal in some sense? In this book we give an answer to this question using the asymptotic minimax approach in the spirit of Ibragimov and Khasminskii (1980a,b, 1981, 1982), Bretagnolle and Huber (1979), Stone (1980, 1982). We assume that the image belongs to a certain functional class and we find the image estimators that achieve the best order of accuracy for the worst images in the class. This concept of optimality is rather rough since only the order of accuracy is optimized. However, it is useful for comparing various image reconstruction methods. For example, we show that some popular methods such as simple linewise processing and linear estimation are not optimal for images with sharp edges. Note that discontinuity of images is an important specific feature appearing in most practical situations where one has to distinguish between the image domain and the background . The approach of this book is based on generalization of nonparametric regression and nonparametric change-point techniques. We discuss these two basic problems in Chapter 1. Chapter 2 is devoted to minimax lower bounds for arbitrary estimators in general statistical models.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
There exists a large variety of image reconstruction methods proposed by different authors (see e. g. Pratt (1978), Rosenfeld and Kak (1982), Marr (1982)). Selection of an appropriate method for a specific problem in image analysis has been always considered as an art. How to find the image reconstruction method which is optimal in some sense? In this book we give an answer to this question using the asymptotic minimax approach in the spirit of Ibragimov and Khasminskii (1980a,b, 1981, 1982), Bretagnolle and Huber (1979), Stone (1980, 1982). We assume that the image belongs to a certain functional class and we find the image estimators that achieve the best order of accuracy for the worst images in the class. This concept of optimality is rather rough since only the order of accuracy is optimized. However, it is useful for comparing various image reconstruction methods. For example, we show that some popular methods such as simple linewise processing and linear estimation are not optimal for images with sharp edges. Note that discontinuity of images is an important specific feature appearing in most practical situations where one has to distinguish between the image domain and the background . The approach of this book is based on generalization of nonparametric regression and nonparametric change-point techniques. We discuss these two basic problems in Chapter 1. Chapter 2 is devoted to minimax lower bounds for arbitrary estimators in general statistical models.