Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
With a rigorous and comprehensive coverage, the second edition of Compliant Mechanisms: Design of Flexure Hinges provides practical answers to the design and analysis of devices that incorporate flexible hinges. Complex-shaped flexible-hinge mechanisms are generated from basic elastic segments by means of a bottom-up compliance (flexibility) approach. The same compliance method and the classical finite element analysis are utilized to study the quasi-static and dynamic performances of these compliant mechanisms. This book offers easy-to-use mathematical tools to investigate a wealth of flexible-hinge configurations and two- or three-dimensional compliant mechanism applications.
FEATURES
Introduces a bottom-up compliance-based approach to characterize the flexibility of new and existing flexible hinges of straight- and curvilinear-axis configurations
Develops a consistent linear lumped-parameter compliance model to thoroughly describe the quasi-static and dynamic behavior of planar/spatial, serial/parallel flexible-hinge mechanisms
Utilizes the finite element method to analyze the quasi-statics and dynamics of compliant mechanisms by means of straight- and curvilinear-axis flexible-hinge elements
Covers miscellaneous topics such as stress concentration, yielding and related maximum load, precision of rotation of straight- and circular-axis flexible hinges, temperature effects on compliances, layered flexible hinges and piezoelectric actuation/sensing
Offers multiple solved examples of flexible hinges and flexible-hinge mechanisms.
This book should serve as a reference to students, researchers, academics and anyone interested to investigate precision flexible-hinge mechanisms by linear model-based methods in various areas of mechanical, aerospace or biomedical engineering, as well as in robotics and micro-/nanosystems.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
With a rigorous and comprehensive coverage, the second edition of Compliant Mechanisms: Design of Flexure Hinges provides practical answers to the design and analysis of devices that incorporate flexible hinges. Complex-shaped flexible-hinge mechanisms are generated from basic elastic segments by means of a bottom-up compliance (flexibility) approach. The same compliance method and the classical finite element analysis are utilized to study the quasi-static and dynamic performances of these compliant mechanisms. This book offers easy-to-use mathematical tools to investigate a wealth of flexible-hinge configurations and two- or three-dimensional compliant mechanism applications.
FEATURES
Introduces a bottom-up compliance-based approach to characterize the flexibility of new and existing flexible hinges of straight- and curvilinear-axis configurations
Develops a consistent linear lumped-parameter compliance model to thoroughly describe the quasi-static and dynamic behavior of planar/spatial, serial/parallel flexible-hinge mechanisms
Utilizes the finite element method to analyze the quasi-statics and dynamics of compliant mechanisms by means of straight- and curvilinear-axis flexible-hinge elements
Covers miscellaneous topics such as stress concentration, yielding and related maximum load, precision of rotation of straight- and circular-axis flexible hinges, temperature effects on compliances, layered flexible hinges and piezoelectric actuation/sensing
Offers multiple solved examples of flexible hinges and flexible-hinge mechanisms.
This book should serve as a reference to students, researchers, academics and anyone interested to investigate precision flexible-hinge mechanisms by linear model-based methods in various areas of mechanical, aerospace or biomedical engineering, as well as in robotics and micro-/nanosystems.