Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This book deals with the main principles of large-scale atmospheric dynamics on the basis of adiabatic motion constants. It can be considered as an introduction to the theory of quasi two-dimensional fluid motion concentrating primarily on nearly horizontal fluid parcel displacements in a stably stratified compressible fluid. A thorough mathematical treatment of the governing equations is coupled with a clear interpretation of the phenomena studied and accompanied by examples of real meteorological data analysis. Topics include a complete set of compressible fluid dynamic equations along with a survey on fluid dynamical conservation laws used in meteorology and atmospheric physics; the derivation of two-dimensional atmospheric models; large-scale flows; isentropic analysis of large-scale atmospheric processes; and the principles of kinetic energy sinks and their relation to the energy balance in the atmosphere.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This book deals with the main principles of large-scale atmospheric dynamics on the basis of adiabatic motion constants. It can be considered as an introduction to the theory of quasi two-dimensional fluid motion concentrating primarily on nearly horizontal fluid parcel displacements in a stably stratified compressible fluid. A thorough mathematical treatment of the governing equations is coupled with a clear interpretation of the phenomena studied and accompanied by examples of real meteorological data analysis. Topics include a complete set of compressible fluid dynamic equations along with a survey on fluid dynamical conservation laws used in meteorology and atmospheric physics; the derivation of two-dimensional atmospheric models; large-scale flows; isentropic analysis of large-scale atmospheric processes; and the principles of kinetic energy sinks and their relation to the energy balance in the atmosphere.