Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Complete with valuable FORTRAN programs that help solve nondifferentiable nonlinear LtandLo.-norm estimation problems, this important reference/text extensively delineates ahistory of Lp-norm estimation. It examines the nonlinear Lp-norm estimation problem that isa viable alternative to least squares estimation problems where the underlying errordistribution is nonnormal, i.e., non-Gaussian.Nonlinear LrNorm Estimation addresses both computational and statistical aspects ofLp-norm estimation problems to bridge the gap between these two fields … contains 70useful illustrations … discusses linear Lp-norm as well as nonlinear Lt, Lo., and Lp-normestimation problems … provides all appropriate computational algorithms and FORTRANlistings for nonlinear Lt- and Lo.-norm estimation problems … guides readers with clear endof-chapter notes on related topics and outstanding research publications … contains numericalexamples plus several practical problems .. . and shows how the data can prescribe variousapplications of Lp-norm alternatives.Nonlinear Lp-Norm Estimation is an indispensable reference for statisticians,operations researchers, numerical analysts, applied mathematicians, biometricians, andcomputer scientists, as well as a text for graduate students in statistics or computer science.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Complete with valuable FORTRAN programs that help solve nondifferentiable nonlinear LtandLo.-norm estimation problems, this important reference/text extensively delineates ahistory of Lp-norm estimation. It examines the nonlinear Lp-norm estimation problem that isa viable alternative to least squares estimation problems where the underlying errordistribution is nonnormal, i.e., non-Gaussian.Nonlinear LrNorm Estimation addresses both computational and statistical aspects ofLp-norm estimation problems to bridge the gap between these two fields … contains 70useful illustrations … discusses linear Lp-norm as well as nonlinear Lt, Lo., and Lp-normestimation problems … provides all appropriate computational algorithms and FORTRANlistings for nonlinear Lt- and Lo.-norm estimation problems … guides readers with clear endof-chapter notes on related topics and outstanding research publications … contains numericalexamples plus several practical problems .. . and shows how the data can prescribe variousapplications of Lp-norm alternatives.Nonlinear Lp-Norm Estimation is an indispensable reference for statisticians,operations researchers, numerical analysts, applied mathematicians, biometricians, andcomputer scientists, as well as a text for graduate students in statistics or computer science.