Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Starting in the early 1980s, people using the tools of nonsmooth analysis developed some remarkable nonsmooth extensions of the existing critical point theory. Until now, however, no one had gathered these tools and results together into a unified, systematic survey of these advances.
This book fills that gap. It provides a complete presentation of nonsmooth critical point theory, then goes beyond it to study nonlinear second order boundary value problems. The authors do not limit their treatment to problems in variational form. They also examine in detail equations driven by the p-Laplacian, its generalizations, and their spectral properties, studying a wide variety of problems and illustrating the powerful tools of modern nonlinear analysis. The presentation includes many recent results, including some that were previously unpublished. Detailed appendices outline the fundamental mathematical tools used in the book, and a rich bibliography forms a guide to the relevant literature.
Most books addressing critical point theory deal only with smooth problems, linear or semilinear problems, or consider only variational methods or the tools of nonlinear operators. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems offers a comprehensive treatment of the subject that is up-to-date, self-contained, and rich in methods for a wide variety of problems.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Starting in the early 1980s, people using the tools of nonsmooth analysis developed some remarkable nonsmooth extensions of the existing critical point theory. Until now, however, no one had gathered these tools and results together into a unified, systematic survey of these advances.
This book fills that gap. It provides a complete presentation of nonsmooth critical point theory, then goes beyond it to study nonlinear second order boundary value problems. The authors do not limit their treatment to problems in variational form. They also examine in detail equations driven by the p-Laplacian, its generalizations, and their spectral properties, studying a wide variety of problems and illustrating the powerful tools of modern nonlinear analysis. The presentation includes many recent results, including some that were previously unpublished. Detailed appendices outline the fundamental mathematical tools used in the book, and a rich bibliography forms a guide to the relevant literature.
Most books addressing critical point theory deal only with smooth problems, linear or semilinear problems, or consider only variational methods or the tools of nonlinear operators. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems offers a comprehensive treatment of the subject that is up-to-date, self-contained, and rich in methods for a wide variety of problems.