Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Biologically Inspired Robotics: Robotics
Paperback

Biologically Inspired Robotics: Robotics

$136.99
Sign in or become a Readings Member to add this title to your wishlist.

Robotic engineering inspired by biology-biomimetics-has many potential applications: robot snakes can be used for rescue operations in disasters, snake-like endoscopes can be used in medical diagnosis, and artificial muscles can replace damaged muscles to recover the motor functions of human limbs. Conversely, the application of robotics technology to our understanding of biological systems and behaviors-biorobotic modeling and analysis-provides unique research opportunities: robotic manipulation technology with optical tweezers can be used to study the cell mechanics of human red blood cells, a surface electromyography sensing system can help us identify the relation between muscle forces and hand movements, and mathematical models of brain circuitry may help us understand how the cerebellum achieves movement control.

Biologically Inspired Robotics contains cutting-edge material-considerably expanded and with additional analysis-from the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). These 16 chapters cover both biomimetics and biorobotic modeling/analysis, taking readers through an exploration of biologically inspired robot design and control, micro/nano bio-robotic systems, biological measurement and actuation, and applications of robotics technology to biological problems.

Contributors examine a wide range of topics, including:

A method for controlling the motion of a robotic snake

The design of a bionic fitness cycle inspired by the jaguar

The use of autonomous robotic fish to detect pollution

A noninvasive brain-activity scanning method using a hybrid sensor

A rehabilitation system for recovering motor function in human hands after injury

Human-like robotic eye and head movements in human-machine interactions

A state-of-the-art resource for graduate students and researchers.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
19 September 2019
Pages
340
ISBN
9780367381783

Robotic engineering inspired by biology-biomimetics-has many potential applications: robot snakes can be used for rescue operations in disasters, snake-like endoscopes can be used in medical diagnosis, and artificial muscles can replace damaged muscles to recover the motor functions of human limbs. Conversely, the application of robotics technology to our understanding of biological systems and behaviors-biorobotic modeling and analysis-provides unique research opportunities: robotic manipulation technology with optical tweezers can be used to study the cell mechanics of human red blood cells, a surface electromyography sensing system can help us identify the relation between muscle forces and hand movements, and mathematical models of brain circuitry may help us understand how the cerebellum achieves movement control.

Biologically Inspired Robotics contains cutting-edge material-considerably expanded and with additional analysis-from the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). These 16 chapters cover both biomimetics and biorobotic modeling/analysis, taking readers through an exploration of biologically inspired robot design and control, micro/nano bio-robotic systems, biological measurement and actuation, and applications of robotics technology to biological problems.

Contributors examine a wide range of topics, including:

A method for controlling the motion of a robotic snake

The design of a bionic fitness cycle inspired by the jaguar

The use of autonomous robotic fish to detect pollution

A noninvasive brain-activity scanning method using a hybrid sensor

A rehabilitation system for recovering motor function in human hands after injury

Human-like robotic eye and head movements in human-machine interactions

A state-of-the-art resource for graduate students and researchers.

Read More
Format
Paperback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
19 September 2019
Pages
340
ISBN
9780367381783