Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Design Principles and Analysis of Thin Concrete Shells, Domes and Folders
Paperback

Design Principles and Analysis of Thin Concrete Shells, Domes and Folders

$134.99
Sign in or become a Readings Member to add this title to your wishlist.

One of the main goals of a good and effective structural design is to decrease, as far as possible, the self-weight of structures, because they must carry the service load. This is especially important for reinforced concrete (RC) structures, as the self-weight of the material is substantial. For RC structures it is furthermore important that the whole structure or most of the structural elements are under compression with small eccentricities. Continuous spatial concrete structures satisfy the above-mentioned requirements. It is shown in this book that a span of a spatial structure is practically independent of its thickness and is a function of its geometry. It is also important to define which structure can be called a spatial one. Such a definition is given in the book and based on this definition, five types of spatial concrete structures were selected: translation shells with positive Gaussian curvature, long convex cylindrical shells, hyperbolic paraboloid shells, domes, and long folders. To demonstrate the complex research, results of experimental, analytical, and numerical evaluation of a real RC dome are presented and discussed. The book is suitable for structural engineers, students, researchers and faculty members at universities.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
29 October 2019
Pages
182
ISBN
9780367377212

One of the main goals of a good and effective structural design is to decrease, as far as possible, the self-weight of structures, because they must carry the service load. This is especially important for reinforced concrete (RC) structures, as the self-weight of the material is substantial. For RC structures it is furthermore important that the whole structure or most of the structural elements are under compression with small eccentricities. Continuous spatial concrete structures satisfy the above-mentioned requirements. It is shown in this book that a span of a spatial structure is practically independent of its thickness and is a function of its geometry. It is also important to define which structure can be called a spatial one. Such a definition is given in the book and based on this definition, five types of spatial concrete structures were selected: translation shells with positive Gaussian curvature, long convex cylindrical shells, hyperbolic paraboloid shells, domes, and long folders. To demonstrate the complex research, results of experimental, analytical, and numerical evaluation of a real RC dome are presented and discussed. The book is suitable for structural engineers, students, researchers and faculty members at universities.

Read More
Format
Paperback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
29 October 2019
Pages
182
ISBN
9780367377212