Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
ZIP Metal Ion Transporters, Volume 684 in the Methods in Enzymology series, highlights new advances in the field with this new volume presenting interesting chapters on a variety of topics, including Biochemistry, Biophysics and Structural Biology, Structure determination of a bacterial ZIP in lipidic cubic phase, Cell-based metal transport assay for animal and plant ZIPs, Measurement of metal binding affinity and transport activity in ZIP transporters using spectroscopic methods, Considerations in production of the (prokaryotic) ZIP family transporters for structural and functional studies, Metal-protein interactions investigated using model systems: thermodynamic, spectroscopic and computational methods, and more.
Additional chapters cover Getting Zinc Into and Out of Cells, In-silico modeling of ZIP9 (TBD), Cellular Function and Regulation, Methods to visualize zinc transporter proteins of the SLC39A family in cells, Assessing metal ion transporting activity of ZIPs: intracellular zinc and iron detection, In vitro studies for studying manganese transport and homeostasis, and much more.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
ZIP Metal Ion Transporters, Volume 684 in the Methods in Enzymology series, highlights new advances in the field with this new volume presenting interesting chapters on a variety of topics, including Biochemistry, Biophysics and Structural Biology, Structure determination of a bacterial ZIP in lipidic cubic phase, Cell-based metal transport assay for animal and plant ZIPs, Measurement of metal binding affinity and transport activity in ZIP transporters using spectroscopic methods, Considerations in production of the (prokaryotic) ZIP family transporters for structural and functional studies, Metal-protein interactions investigated using model systems: thermodynamic, spectroscopic and computational methods, and more.
Additional chapters cover Getting Zinc Into and Out of Cells, In-silico modeling of ZIP9 (TBD), Cellular Function and Regulation, Methods to visualize zinc transporter proteins of the SLC39A family in cells, Assessing metal ion transporting activity of ZIPs: intracellular zinc and iron detection, In vitro studies for studying manganese transport and homeostasis, and much more.