Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Surveys in Applied Mathematics
Hardback

Surveys in Applied Mathematics

$276.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Partial differential equations play a central role in many branches of science and engineering. Therefore it is important to solve problems involving them. One aspect of solving a partial differential equation problem is to show that it is well-posed, i. e. , that it has one and only one solution, and that the solution depends continuously on the data of the problem. Another aspect is to obtain detailed quantitative information about the solution. The traditional method for doing this was to find a representation of the solution as a series or integral of known special functions, and then to evaluate the series or integral by numerical or by asymptotic methods. The shortcoming of this method is that there are relatively few problems for which such representations can be found. Consequently, the traditional method has been replaced by methods for direct solution of problems either numerically or asymptotically. This article is devoted to a particular method, called the ray method, for the asymptotic solution of problems for linear partial differential equations governing wave propagation. These equations involve a parameter, such as the wavelength. . \, which is small compared to all other lengths in the problem. The ray method is used to construct an asymptotic expansion of the solution which is valid near . . \ = 0, or equivalently for k = 21r I A near infinity.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Springer Science+Business Media
Country
United States
Date
31 August 1995
Pages
264
ISBN
9780306449932

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Partial differential equations play a central role in many branches of science and engineering. Therefore it is important to solve problems involving them. One aspect of solving a partial differential equation problem is to show that it is well-posed, i. e. , that it has one and only one solution, and that the solution depends continuously on the data of the problem. Another aspect is to obtain detailed quantitative information about the solution. The traditional method for doing this was to find a representation of the solution as a series or integral of known special functions, and then to evaluate the series or integral by numerical or by asymptotic methods. The shortcoming of this method is that there are relatively few problems for which such representations can be found. Consequently, the traditional method has been replaced by methods for direct solution of problems either numerically or asymptotically. This article is devoted to a particular method, called the ray method, for the asymptotic solution of problems for linear partial differential equations governing wave propagation. These equations involve a parameter, such as the wavelength. . \, which is small compared to all other lengths in the problem. The ray method is used to construct an asymptotic expansion of the solution which is valid near . . \ = 0, or equivalently for k = 21r I A near infinity.

Read More
Format
Hardback
Publisher
Springer Science+Business Media
Country
United States
Date
31 August 1995
Pages
264
ISBN
9780306449932