Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book is devoted to the mathematical optimization theory and modeling techniques that recently have been applied to the problem of controlling the shape and intensity of the power density distribution in the core of large nuclear reactors. The book has been prepared with the following purposes in mind: 1. To provide, in a condensed manner, the background preparation on reactor kinetics required for a comprehensive description of the main problems encountered in designing spatial control systems for nuclear reactor cores. 2. To present the work that has already been done on this subject and provide the basic mathematical tools required for a full understand ing of the different methods proposed in the literature. 3. To stimulate further work in this challenging area by weighting the advantages and disadvantages of the existing techniques and evaluating their effectiveness and applicability. In addition to coverage of the standard topics on the subject of optimal control for distributed parametersystems, the book includes, at amathemati cal level suitable for graduate students in engineering, discussions of con ceptsoffunctional analysis, the representation theory ofgroups, and integral equations. Although these topics constitute a requisite for a full understanding of the new developments in the area of reactor modeling and control, they are seidom treated together in a single book and, when they are, their presenta tion isoften directed to the mathematician.They are thus relatively unknown to the engineering community.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book is devoted to the mathematical optimization theory and modeling techniques that recently have been applied to the problem of controlling the shape and intensity of the power density distribution in the core of large nuclear reactors. The book has been prepared with the following purposes in mind: 1. To provide, in a condensed manner, the background preparation on reactor kinetics required for a comprehensive description of the main problems encountered in designing spatial control systems for nuclear reactor cores. 2. To present the work that has already been done on this subject and provide the basic mathematical tools required for a full understand ing of the different methods proposed in the literature. 3. To stimulate further work in this challenging area by weighting the advantages and disadvantages of the existing techniques and evaluating their effectiveness and applicability. In addition to coverage of the standard topics on the subject of optimal control for distributed parametersystems, the book includes, at amathemati cal level suitable for graduate students in engineering, discussions of con ceptsoffunctional analysis, the representation theory ofgroups, and integral equations. Although these topics constitute a requisite for a full understanding of the new developments in the area of reactor modeling and control, they are seidom treated together in a single book and, when they are, their presenta tion isoften directed to the mathematician.They are thus relatively unknown to the engineering community.