Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
To the biochemist, water is, of course, the only solvent worthy of consideration, because natural macromolecules exhibit their remarkable conformational properties only in aqueous media. Probably because of these remarkable properties, biochemists do not tend to regard proteins, nucleotides and polysaccharides as polymers in the way that real polymer scientists regard methyl methacrylate and polyethylene. The laws of polymer statistics hardly apply to native biopolymers. Between these two powerful camps, lies the No-man’s land of water soluble synthetic polymers: here, we must also include natural polymers which have been chemically modified. The scientific literature of these compounds is characterized by a large number of patents, which is usually a sign of little basic understanding, of ‘know-how’ rather than of ‘know-why’. Many of the physical properties of such aqueous solutions are intriguing: the polymer may be completely miscible with water, and yet water is a ‘poor’ solvent, in terms of polymer parlance. ~kiny of the polymers form thermorever sible gels on heating or cooling. The phenomena of exothermic mixing and salting-in are common features of such systems: neither can be fully explained by the available theories. Finally, the eccentric behaviour of polyelectrolytes is well documented. Despite the lack of a sound physico-chemical foundation there is a general awareness of the importance of water soluble vinyl, acrylic, polyether, starch and cellulose derivatives, as witnessed again by ~he vast patent literature.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
To the biochemist, water is, of course, the only solvent worthy of consideration, because natural macromolecules exhibit their remarkable conformational properties only in aqueous media. Probably because of these remarkable properties, biochemists do not tend to regard proteins, nucleotides and polysaccharides as polymers in the way that real polymer scientists regard methyl methacrylate and polyethylene. The laws of polymer statistics hardly apply to native biopolymers. Between these two powerful camps, lies the No-man’s land of water soluble synthetic polymers: here, we must also include natural polymers which have been chemically modified. The scientific literature of these compounds is characterized by a large number of patents, which is usually a sign of little basic understanding, of ‘know-how’ rather than of ‘know-why’. Many of the physical properties of such aqueous solutions are intriguing: the polymer may be completely miscible with water, and yet water is a ‘poor’ solvent, in terms of polymer parlance. ~kiny of the polymers form thermorever sible gels on heating or cooling. The phenomena of exothermic mixing and salting-in are common features of such systems: neither can be fully explained by the available theories. Finally, the eccentric behaviour of polyelectrolytes is well documented. Despite the lack of a sound physico-chemical foundation there is a general awareness of the importance of water soluble vinyl, acrylic, polyether, starch and cellulose derivatives, as witnessed again by ~he vast patent literature.