Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

The Left Hand of Data
Paperback

The Left Hand of Data

$131.99
Sign in or become a Readings Member to add this title to your wishlist.

A speculative framework that imagines how we can use education data to promote play, creativity, and social justice over normativity and conformity.

A speculative framework that imagines how we can use education data to promote play, creativity, and social justice over normativity and conformity.

Educational analytics tend toward aggregation, asking what a "normative" learner does. In The Left Hand of Data, educational researchers Matthew Berland and Antero Garcia start from a different assumption-that outliers are, and must be treated as, valued individuals. Berland and Garcia argue that the aim of analytics should not be about enforcing and entrenching norms but about using data science to break new ground and enable play and creativity. From this speculative vantage point, they ask how we can go about living alongside data in a better way, in a more just way, while also building on the existing technologies and our knowledge of the present.

The Left Hand of Data explores the many ways in which we use data to shape the possible futures of young people-in schools, in informal learning environments, in colleges, in libraries, and with educational games. It considers the processes by which students are sorted, labeled, categorized, and intervened upon using the bevy of data extracted and collected from individuals and groups, anonymously or identifiably. When, how, and with what biases are these data collected and utilized? What decisions must educational researchers make around data in an era of high-stakes assessment, surveillance, and rising inequities tied to race, class, gender, and other intersectional factors? How are these complex considerations around data changing in the rapidly evolving world of machine learning, AI, and emerging fields of educational data science? The surprising answers the authors discover in their research make clear that we do not need to wait for a hazy tomorrow to do better today.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
MIT Press Ltd
Country
United States
Date
23 April 2024
Pages
208
ISBN
9780262547529

A speculative framework that imagines how we can use education data to promote play, creativity, and social justice over normativity and conformity.

A speculative framework that imagines how we can use education data to promote play, creativity, and social justice over normativity and conformity.

Educational analytics tend toward aggregation, asking what a "normative" learner does. In The Left Hand of Data, educational researchers Matthew Berland and Antero Garcia start from a different assumption-that outliers are, and must be treated as, valued individuals. Berland and Garcia argue that the aim of analytics should not be about enforcing and entrenching norms but about using data science to break new ground and enable play and creativity. From this speculative vantage point, they ask how we can go about living alongside data in a better way, in a more just way, while also building on the existing technologies and our knowledge of the present.

The Left Hand of Data explores the many ways in which we use data to shape the possible futures of young people-in schools, in informal learning environments, in colleges, in libraries, and with educational games. It considers the processes by which students are sorted, labeled, categorized, and intervened upon using the bevy of data extracted and collected from individuals and groups, anonymously or identifiably. When, how, and with what biases are these data collected and utilized? What decisions must educational researchers make around data in an era of high-stakes assessment, surveillance, and rising inequities tied to race, class, gender, and other intersectional factors? How are these complex considerations around data changing in the rapidly evolving world of machine learning, AI, and emerging fields of educational data science? The surprising answers the authors discover in their research make clear that we do not need to wait for a hazy tomorrow to do better today.

Read More
Format
Paperback
Publisher
MIT Press Ltd
Country
United States
Date
23 April 2024
Pages
208
ISBN
9780262547529