Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Noncommutative measures and Lp and Orlicz Spaces, with Applications to Quantum Physics
Paperback

Noncommutative measures and Lp and Orlicz Spaces, with Applications to Quantum Physics

$103.99
Sign in or become a Readings Member to add this title to your wishlist.

The theory of noncommutative Haagerup 𝐿𝑝 and Orlicz spaces is an important tool in both Quantum Harmonic Analysis and Mathematical Physics. Indeed, noncommutativity is arguably the raison-d'etre of the Heisenberg approach to quantum mechanics. Just as classical analysis formed the foundation for classical mechanics, a mature response to the challenges posed by quantum mechanics (from the Heisenberg perspective) similarly needs to be built on a well-developed foundation of noncommutative analysis. In the passage from the classical to the quantum setting, functions get replaced with (possibly noncommuting) operators. Von Neumann himself realised early on that some sort of noncommutative integral calculus tailored to this setting is therefore needed to meet this challenge. This book seeks to help address this need. The noncommutative Orlicz spaces presented here help in dealing with observable quantities and entropy.Goldstein and Labuschagne provide a detailed account of the current theories in a way that is useful and accessible to a wide range of readers, from graduate students to advanced users. Beginning with some foundational examples intended to build intuition for the theory to follow, including the theory of noncommutative decreasing arrangements, as developed by Fack and Kosaki, and of Orlicz spaces for general von Neumann algebras. The authors then present the theory of the more accessible tracial case, followed by that of the more demanding general (type III) case. The final part of the book is devoted to advanced theory and applications.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Oxford University Press
Country
United Kingdom
Date
26 June 2025
Pages
608
ISBN
9780198950219

The theory of noncommutative Haagerup 𝐿𝑝 and Orlicz spaces is an important tool in both Quantum Harmonic Analysis and Mathematical Physics. Indeed, noncommutativity is arguably the raison-d'etre of the Heisenberg approach to quantum mechanics. Just as classical analysis formed the foundation for classical mechanics, a mature response to the challenges posed by quantum mechanics (from the Heisenberg perspective) similarly needs to be built on a well-developed foundation of noncommutative analysis. In the passage from the classical to the quantum setting, functions get replaced with (possibly noncommuting) operators. Von Neumann himself realised early on that some sort of noncommutative integral calculus tailored to this setting is therefore needed to meet this challenge. This book seeks to help address this need. The noncommutative Orlicz spaces presented here help in dealing with observable quantities and entropy.Goldstein and Labuschagne provide a detailed account of the current theories in a way that is useful and accessible to a wide range of readers, from graduate students to advanced users. Beginning with some foundational examples intended to build intuition for the theory to follow, including the theory of noncommutative decreasing arrangements, as developed by Fack and Kosaki, and of Orlicz spaces for general von Neumann algebras. The authors then present the theory of the more accessible tracial case, followed by that of the more demanding general (type III) case. The final part of the book is devoted to advanced theory and applications.

Read More
Format
Paperback
Publisher
Oxford University Press
Country
United Kingdom
Date
26 June 2025
Pages
608
ISBN
9780198950219