Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Deep Learning for Computational Imaging
Hardback

Deep Learning for Computational Imaging

$219.99
Sign in or become a Readings Member to add this title to your wishlist.

Computational techniques for image reconstruction problems enable imaging technologies including high-resolution microscopy, astronomy and seismology, computed tomography, and magnetic resonance imaging. Until recently, methods for solving such inverse problems were derived by experts without any learning. Now, the best performing image reconstruction methods are based on deep learning. This textbook gives the first comprehensive introduction to deep learning based image reconstruction methods. This book first introduces important inverse problems in imaging, including denoising and reconstructing an image from few and noisy measurements, and explains what makes those problems hard and interesting. Then, the book briefly discusses traditional optimization and sparsity based reconstruction methods, as well as optimization techniques as a basis for training and deriving deep neural networks for image reconstruction. The main part of the book is about how to solve image reconstruction problems with deep learning techniques: The book first disuses supervised deep learning approaches that map a measurement to an image as well as network architectures for imaging including convolutional neural networks and transformers. Then, reconstruction approaches based on generative models such as variational autoencoders and diffusion models are discussed, and how un-trained neural networks and implicit neural representations enable signal and image reconstruction. The book ends with a discussion on the robustness of deep learning based reconstruction as well as a discussion on the important topic of evaluating models and datasets, which are a critical ingredient of deep learning based imaging.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Oxford University Press
Country
United Kingdom
Date
23 July 2025
Pages
240
ISBN
9780198947172

Computational techniques for image reconstruction problems enable imaging technologies including high-resolution microscopy, astronomy and seismology, computed tomography, and magnetic resonance imaging. Until recently, methods for solving such inverse problems were derived by experts without any learning. Now, the best performing image reconstruction methods are based on deep learning. This textbook gives the first comprehensive introduction to deep learning based image reconstruction methods. This book first introduces important inverse problems in imaging, including denoising and reconstructing an image from few and noisy measurements, and explains what makes those problems hard and interesting. Then, the book briefly discusses traditional optimization and sparsity based reconstruction methods, as well as optimization techniques as a basis for training and deriving deep neural networks for image reconstruction. The main part of the book is about how to solve image reconstruction problems with deep learning techniques: The book first disuses supervised deep learning approaches that map a measurement to an image as well as network architectures for imaging including convolutional neural networks and transformers. Then, reconstruction approaches based on generative models such as variational autoencoders and diffusion models are discussed, and how un-trained neural networks and implicit neural representations enable signal and image reconstruction. The book ends with a discussion on the robustness of deep learning based reconstruction as well as a discussion on the important topic of evaluating models and datasets, which are a critical ingredient of deep learning based imaging.

Read More
Format
Hardback
Publisher
Oxford University Press
Country
United Kingdom
Date
23 July 2025
Pages
240
ISBN
9780198947172