Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Methods of Graph Decompositions
Hardback

Methods of Graph Decompositions

$490.99
Sign in or become a Readings Member to add this title to your wishlist.

In general terms, a graph decomposition is a partition of a graph into parts satisfying some special conditions. Methods of Graph Decompositions discusses some state-of-the-art decomposition methods of graph theory, which are highly instrumental when dealing with a number of fundamental concepts such as unigraphs, isomorphism, reconstruction conjectures, k-dimensional graphs, degree sequences, line graphs and line hypergraphs. The first part of the book explores the algebraic theory of graph decomposition, whose major idea is to define a binary operation that turns the set of graphs or objects derived from graphs into an algebraic semigroup. If an operation and a class of graphs are appropriately chosen, then, just as for integers, each graph has a unique factorization (or canonical decomposition) into a product of prime factors. The unique factorization property makes this type of decomposition especially efficient for problems associated with graph isomorphism, and several such examples are described in the book. Another topic is devoted to Krausz-type decompositions, that is, special coverings of graphs by cliques that are directly associated with representation of graphs as line graphs of hypergraphs. The book discusses various algorithmic and structural results associated with the existence, properties and applications of such decompositions. In particular, it demonstrates how Krausz-type decompositions are directly related to topological dimension, information complexity and self-similarity of graphs, thus allowing to establish links between combinatorics, general topology, information theory and studies of complex systems. The above topics are united by the role played in their development by Professor Regina Tyshkevich, and the book is a tribute to her memory. The book will be ideal for researchers, engineers and specialists, who are interested in fundamental problems of graph theory and proof techniques to tackle them.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Oxford University Press
Country
United Kingdom
Date
15 June 2024
Pages
288
ISBN
9780198882091

In general terms, a graph decomposition is a partition of a graph into parts satisfying some special conditions. Methods of Graph Decompositions discusses some state-of-the-art decomposition methods of graph theory, which are highly instrumental when dealing with a number of fundamental concepts such as unigraphs, isomorphism, reconstruction conjectures, k-dimensional graphs, degree sequences, line graphs and line hypergraphs. The first part of the book explores the algebraic theory of graph decomposition, whose major idea is to define a binary operation that turns the set of graphs or objects derived from graphs into an algebraic semigroup. If an operation and a class of graphs are appropriately chosen, then, just as for integers, each graph has a unique factorization (or canonical decomposition) into a product of prime factors. The unique factorization property makes this type of decomposition especially efficient for problems associated with graph isomorphism, and several such examples are described in the book. Another topic is devoted to Krausz-type decompositions, that is, special coverings of graphs by cliques that are directly associated with representation of graphs as line graphs of hypergraphs. The book discusses various algorithmic and structural results associated with the existence, properties and applications of such decompositions. In particular, it demonstrates how Krausz-type decompositions are directly related to topological dimension, information complexity and self-similarity of graphs, thus allowing to establish links between combinatorics, general topology, information theory and studies of complex systems. The above topics are united by the role played in their development by Professor Regina Tyshkevich, and the book is a tribute to her memory. The book will be ideal for researchers, engineers and specialists, who are interested in fundamental problems of graph theory and proof techniques to tackle them.

Read More
Format
Hardback
Publisher
Oxford University Press
Country
United Kingdom
Date
15 June 2024
Pages
288
ISBN
9780198882091