Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This book intends to be an updated compilation of the most important buccal, gastric, intestinal, pulmonary, nasal, vaginal, ocular, skin and blood-brain barrier in vitro models for predicting the permeability of drugs. Concepts and Models for Drug Permeability Studies focuses on different approaches and comprises of various models. Each model describes the protocol of seeding and conservation, the application for specific drugs, and takes into account the maintenance of physiologic characteristics and functionality of epithelium, from the simplest immortalized cell-based monoculture to the most complex engineered-tissue models. Chapters also discuss the equivalence between in vitro cell and tissue models and in vivo conditions, highlighting how each model may provisionally resemble a different drug absorption route.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This book intends to be an updated compilation of the most important buccal, gastric, intestinal, pulmonary, nasal, vaginal, ocular, skin and blood-brain barrier in vitro models for predicting the permeability of drugs. Concepts and Models for Drug Permeability Studies focuses on different approaches and comprises of various models. Each model describes the protocol of seeding and conservation, the application for specific drugs, and takes into account the maintenance of physiologic characteristics and functionality of epithelium, from the simplest immortalized cell-based monoculture to the most complex engineered-tissue models. Chapters also discuss the equivalence between in vitro cell and tissue models and in vivo conditions, highlighting how each model may provisionally resemble a different drug absorption route.