Robust Theoretical Models in Medicinal Chemistry

Format
Paperback
Publisher
Elsevier - Health Sciences Division
Country
United States
Published
1 August 2025
Pages
350
ISBN
9780443274206

Robust Theoretical Models in Medicinal Chemistry

Robust Theoretical Models in Medicinal Chemistry: QSAR, Artificial Intelligence, Machine Learning, and Deep Learning serves as a valuable resource chock full of applications extending into multiple knowledge domains. The meticulous construction of a robust model holds significance, not only in drug discovery but also in engineering, chemistry, pharmaceutical, and food-related research, illustrating the broad spectrum of fields where QSAR methodologies can be instrumental. The activities considered in QSAR span chemical measurements and biological assays, making this approach a versatile tool applicable across various scientific domains. Currently, QSAR finds extensive use in diverse disciplines, prominently in drug design and environmental risk assessment.

Quantitative Structure-Activity Relationships (QSAR) represent a concerted effort to establish correlations between structural or property descriptors of compounds and their respective activities. These physicochemical descriptors encompass a wide array of parameters, accounting for hydrophobicity, topology, electronic properties, and steric effects, and can be determined empirically or, more recently, through advanced computational methods.

Order online and we’ll ship when available (1 August 2025)

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.