Applied Machine Learning Explainability Techniques: Make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more
Aditya Bhattacharya
Applied Machine Learning Explainability Techniques: Make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more
Aditya Bhattacharya
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Leverage top XAI frameworks to explain your machine learning models with ease and discover best practices and guidelines to build scalable explainable ML systems
Key Features
Explore various explainability methods for designing robust and scalable explainable ML systems Use XAI frameworks such as LIME and SHAP to make ML models explainable to solve practical problems Design user-centric explainable ML systems using guidelines provided for industrial applications
Book DescriptionExplainable AI (XAI) is an emerging field that brings artificial intelligence (AI) closer to non-technical end users. XAI makes machine learning (ML) models transparent and trustworthy along with promoting AI adoption for industrial and research use cases.
Applied Machine Learning Explainability Techniques comes with a unique blend of industrial and academic research perspectives to help you acquire practical XAI skills. You’ll begin by gaining a conceptual understanding of XAI and why it’s so important in AI. Next, you’ll get the practical experience needed to utilize XAI in AI/ML problem-solving processes using state-of-the-art methods and frameworks. Finally, you’ll get the essential guidelines needed to take your XAI journey to the next level and bridge the existing gaps between AI and end users.
By the end of this ML book, you’ll be equipped with best practices in the AI/ML life cycle and will be able to implement XAI methods and approaches using Python to solve industrial problems, successfully addressing key pain points encountered.
What you will learn
Explore various explanation methods and their evaluation criteria Learn model explanation methods for structured and unstructured data Apply data-centric XAI for practical problem-solving Hands-on exposure to LIME, SHAP, TCAV, DALEX, ALIBI, DiCE, and others Discover industrial best practices for explainable ML systems Use user-centric XAI to bring AI closer to non-technical end users Address open challenges in XAI using the recommended guidelines
Who this book is forThis book is for scientists, researchers, engineers, architects, and managers who are actively engaged in machine learning and related fields. Anyone who is interested in problem-solving using AI will benefit from this book. Foundational knowledge of Python, ML, DL, and data science is recommended. AI/ML experts working with data science, ML, DL, and AI will be able to put their knowledge to work with this practical guide. This book is ideal for you if you’re a data and AI scientist, AI/ML engineer, AI/ML product manager, AI product owner, AI/ML researcher, and UX and HCI researcher.
This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days
Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.
Sign in or become a Readings Member to add this title to a wishlist.