Discrete Iterations: A Metric Study
Francois Robert
Discrete Iterations: A Metric Study
Francois Robert
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
a c 9 h In presenting this monograph, I would like to indicate both its orientation as well as my personal reasons for being interested in discrete iterations (that is, iterations on a generally very large,jinite set). While working in numerical analysis I have been interested in two main aspects: - the algorithmic aspect: an iterative algorithm is a mathematical entity which behaves in a dynamic fashion. Even if it is started far from a solution, it will often tend to get closer and closer. - the mathematical aspect: this consists of a coherent and rigorous analy sis of convergence, with the aid of mathematical tools (these tools are mainly the use of norms for convergence proofs, the use of matrix algebra and so on). One may for example refer to the algorithmic and mathematical aspects of Newton’s method in JRn as well as to the QR algorithm for eigenvalues of matrices. These two algorithms seem to me to be the most fascinating algorithms in numerical analysis, since both show a remarkable practical efficiency even though there exist relatively few global convergence results for them.
This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days
Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.
Sign in or become a Readings Member to add this title to a wishlist.