Claim Models: Granular Forms and Machine Learning Forms

Claim Models: Granular Forms and Machine Learning Forms
Format
Paperback
Publisher
Mdpi AG
Country
Published
15 April 2020
Pages
108
ISBN
9783039286645

Claim Models: Granular Forms and Machine Learning Forms

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This collection of articles addresses the most modern forms of loss reserving methodology: granular models and machine learning models. New methodologies come with questions about their applicability. These questions are discussed in one article, which focuses on the relative merits of granular and machine learning models. Others illustrate applications with real-world data. The examples include neural networks, which, though well known in some disciplines, have previously been limited in the actuarial literature. This volume expands on that literature, with specific attention to their application to loss reserving. For example, one of the articles introduces the application of neural networks of the gated recurrent unit form to the actuarial literature, whereas another uses a penalized neural network. Neural networks are not the only form of machine learning, and two other papers outline applications of gradient boosting and regression trees respectively. Both articles construct loss reserves at the individual claim level so that these models resemble granular models. One of these articles provides a practical application of the model to claim watching, the action of monitoring claim development and anticipating major features. Such watching can be used as an early warning system or for other administrative purposes. Overall, this volume is an extremely useful addition to the libraries of those working at the loss reserving frontier.

This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.