Nonparametric Smoothing and Lack-of-Fit Tests

Jeffrey Hart

Nonparametric Smoothing and Lack-of-Fit Tests
Format
Paperback
Publisher
Springer-Verlag New York Inc.
Country
United States
Published
28 November 2012
Pages
288
ISBN
9781475727241

Nonparametric Smoothing and Lack-of-Fit Tests

Jeffrey Hart

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

An exploration of the use of smoothing methods in testing the fit of parametric regression models. The book reviews many of the existing methods for testing lack-of-fit and also proposes a number of new methods, addressing both applied and theoretical aspects of the model checking problems. As such, the book is of interest to practitioners of statistics and researchers investigating either lack-of-fit tests or nonparametric smoothing ideas. The first four chapters introduce the problem of estimating regression functions by nonparametric smoothers, primarily those of kernel and Fourier series type, and could be used as the foundation for a graduate level course on nonparametric function estimation. The prerequisites for a full appreciation of the book are a modest knowledge of calculus and some familiarity with the basics of mathematical statistics.

This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.