The Structure of Classical Diffeomorphism Groups

Augustin Banyaga,Deborah Ajayi

The Structure of Classical Diffeomorphism Groups
Format
Paperback
Publisher
Springer-Verlag New York Inc.
Country
United States
Published
8 December 2010
Pages
202
ISBN
9781441947741

The Structure of Classical Diffeomorphism Groups

Augustin Banyaga,Deborah Ajayi

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The book introduces and explains most of the main techniques and ideas in the study of the structure of diffeomorphism groups. A quite complete proof of Thurston’s theorem on the simplicity of some diffeomorphism groups is given. The method of the proof is generalized to symplectic and volume-preserving diffeomorphisms. The Mather-Thurston theory relating foliations with diffeomorphism groups is outlined. A central role is played by the flux homomorphism. Various cohomology classes connected with the flux are defined on the group of diffeomorphisms. The main results on the structure of diffeomorphism groups are applied to showing that classical structures are determined by their automorphism groups, a contribution to the Erlanger Program of Klein. Audience: Graduate students and researchers in mathematics and physics.

This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.