Spectral Theory of Operators in Hilbert Space

Kurt Otto Friedrichs

Spectral Theory of Operators in Hilbert Space
Format
Paperback
Publisher
Literary Licensing, LLC
Country
United States
Published
1 July 2012
Pages
218
ISBN
9781258449834

Spectral Theory of Operators in Hilbert Space

Kurt Otto Friedrichs

The Present Lectures Intend To Provide An Introduction To The Spectral Analysis Of Self-Joint Operators Within The Framework Of Hilbert Space Theory. The Guiding Notion In This Approach Is That Of Spectral Representation. At The Same Time The Notion Of Function Of An Operator Is Emphasized. The Definition Of Hilbert Space: In Mathematics, A Hilbert Space Is A Real Or Complex Vector Space With A Positive-Definite Hermitian Form, That Is Complete Under Its Norm. Thus It Is An Inner Product Space, Which Means That It Has Notions Of Distance And Of Angle (Especially The Notion Of Orthogonality Or Perpendicularity). The Completeness Requirement Ensures That For Infinite Dimensional Hilbert Spaces The Limits Exist When Expected, Which Facilitates Various Definitions From Calculus. A Typical Example Of A Hilbert Space Is The Space Of Square Summable Sequences. Hilbert Spaces Allow Simple Geometric Concepts, Like Projection And Change Of Basis To Be Applied To Infinite Dimensional Spaces, Such As Function Spaces. They Provide A Context With Which To Formalize And Generalize The Concepts Of The Fourier Series In Terms Of Arbitrary Orthogonal Polynomials And Of The Fourier Transform, Which Are Central Concepts From Functional Analysis. Hilbert Spaces Are Of Crucial Importance In The Mathematical Formulation Of Quantum Mechanics.

This item is not currently in-stock. It can be ordered online and is expected to ship in approx 2 weeks

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.