Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems

Ruqiang Yan, Zhibin Zhao

Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems
Format
Hardback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Published
6 June 2024
Pages
206
ISBN
9781032752372

Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems

Ruqiang Yan, Zhibin Zhao

The book aims to highlight the potential of deep learning (DL)-enabled methods in intelligent fault diagnosis (IFD), along with their benefits and contributions.

The authors first introduce basic applications of DL-enabled IFD, including auto-encoders, deep belief networks, and convolutional neural networks. Advanced topics of DL-enabled IFD are also explored, such as data augmentation, multi-sensor fusion, unsupervised deep transfer learning, neural architecture search, self-supervised learning, and reinforcement learning. Aiming to revolutionize the nature of IFD, Deep Neural Networks-Enabled Intelligent Fault Diangosis of Mechanical Systems contributes to improved efficiency, safety, and reliability of mechanical systems in various industrial domains.

The book will appeal to academic researchers, practitioners, and students in the fields of intelligent fault diagnosis, prognostics and health management, and deep learning.

This item is not currently in-stock. It can be ordered online and is expected to ship in approx 2 weeks

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.