Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory

Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory
Format
Paperback
Publisher
Springer
Country
NL
Published
31 August 2001
Pages
335
ISBN
9780792371847

Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Integrable quantum field theories and integrable lattice models have been studied for several decades, but during the last few years new ideas have emerged that have considerably changed the topic. The first group of papers published here is concerned with integrable structures of quantum lattice models related to quantum group symmetries. The second group deals with the description of integrable structures in two-dimensional quantum field theories, especially boundary problems, thermodynamic Bethe ansatz and form factor problems. Finally, a major group of papers is concerned with the purely mathematical framework that underlies the physically-motivated research on quantum integrable models, including elliptic deformations of groups, representation theory of non-compact quantum groups, and quantization of moduli spaces.

This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.