Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS
Qingzhao Yu,Bin Li (Wuhan University, Hubei, China)
Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS
Qingzhao Yu,Bin Li (Wuhan University, Hubei, China)
Third-variable effect refers to the effect transmitted by third-variables that intervene in the relationship between an exposure and a response variable. Differentiating between the indirect effect of individual factors from multiple third-variables is a constant problem for modern researchers.
Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS introduces general definitions of third-variable effects that are adaptable to all different types of response (categorical or continuous), exposure, or third-variables. Using this method, multiple third- variables of different types can be considered simultaneously, and the indirect effect carried by individual third-variables can be separated from the total effect. Readers of all disciplines familiar with introductory statistics will find this a valuable resource for analysis.
Key Features:
Parametric and nonparametric method in third variable analysis Multivariate and Multiple third-variable effect analysis Multilevel mediation/confounding analysis Third-variable effect analysis with high-dimensional data Moderation/Interaction effect analysis within the third-variable analysis R packages and SAS macros to implement methods proposed in the book
This item is not currently in-stock. It can be ordered online and is expected to ship in approx 2 weeks
Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.
Sign in or become a Readings Member to add this title to a wishlist.